Structural Analysis

Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering

University Tun Hussein Onn Malaysia

Introduction

- The primary purpose of structural analysis is to establish the distribution of internal forces and moments over the whole part of a structure and to identify the critical design conditions at all sections.
- The type of analysis should appropriate to the problem being considered.
- The following approach can be used: linear elastic analysis, linear elastic analysis with limited redistribution, and plastic analysis.
- Linear elastic analysis can be carried out by assuming that the cross section is uncracked (i.e. concrete section properties), involves linear stress-strain relationships and mean value of elastic modulus.
- Plastic analysis is desired in the design consideration, however, this approach requires advanced solutions.

Distribution of actions on slab

Action on slab
and wall transfer
to beam

Distribute to foundation

Structural Layout

- Before any analysis and design can be conducted, structural layout (key-plan) must be produced.
- Structural layout planning is always started from the lowest floor. Step to produce structural layout:
- Study and understand the architectural drawings (floor plans, elevations, cross sections, isometric view, specific details and so on).
- Identify location and orientation of columns.
- Identify location and position of beams.
- Sketch the structural plans.
- For a simple layout, structural layout can be sketched on the architectural drawing by using colour pencil.
- For a complex layout, structural layout can be sketched on the butter paper by tracing from the architectural drawing.

Structural Layout

- Location, orientation and dimension of columns:
- Some are stated in the architectural drawings.
- At the corner and intersection.
- The distance between column and column is not too far and too close. Typically about 3 m to 6 m .
- Flush with brickwall
- Location, position and dimension of beams
- Location of brickwall, to brace the columns, to flush and brace the brickwall, to form spanning slab.
- Dimension of beam is governed by thickness of brickwall, types of building, type of floor (ground or upper floor, upper floor with or without ceiling, head room), span and architectural drawing.

Structural Layout

With Wisdom We Explore

Structural Layout

With Wisdom We Explore

Analysis of Actions

- Actions that applied on a beam may consist of beams selfweight, permanent and variable actions from slabs, actions from secondary beams and other structural or non-structural members supported by the beam.
- The distribution of slab actions on beams depends on the slab dimension, supporting system and boundary condition.
- It is important to determine the type of slab using following criteria:

Analysis of Actions

- Type of actions that must be considered:

Slab	\checkmark Permanent action: (i) Selfweight of slab, (ii) Finishes and services, and (iii) Ceiling \checkmark Variable action (depend on function of floor)
Beam	\checkmark Permanent action: (i) Distribution from slab, (ii) Selfweight of beam, and (iii) Brickwall \checkmark Variable action from slab
Column	\checkmark Permanent action: (i) Distribution from beam, and (ii) selfweight of column
Foundation	\checkmark Vermanent action: (i) Distribution from columns, and (ii) selfweight of footing \checkmark Variable action from column

Analysis of Actions

- One-way spanning slab that supported by beams:

Beam AC and BD

Beam AB and CD

Analysis of Actions

- Two-way slab panel freely supported along four edge:

How about if $I_{x}=I_{y}$?

Analysis of Actions

- There are alternatives methods which consider various support conditions and slab continuity. The methods are (i). Slab shear coefficient from Table 3.15 BS 8110, (ii). Yield line analysis and (iii). Table 63 Reinforced Concrete Designer's Handbook by Reynold.

Table 3.15 - Shear force coefficient for uniformly loaded rectangular panels supported on four sides with provision for torsion at corners

Type of panel and location	β_{vx} for values of $l_{\mathrm{y}} / l_{\mathrm{x}}$								β_{vy}
	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
Four edges continuous Continuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33
One short edge discontinuous Continuous edge Discontinuous edge	$\begin{aligned} & 0.36 \\ & - \end{aligned}$	$\begin{aligned} & 0.39 \\ & - \end{aligned}$	$\begin{aligned} & 0.42 \\ & - \end{aligned}$	$\begin{aligned} & 0.44 \\ & - \end{aligned}$	$\begin{aligned} & 0.45 \\ & - \end{aligned}$	$\begin{aligned} & 0.47 \\ & - \end{aligned}$	$\begin{aligned} & 0.50 \\ & - \end{aligned}$	$\begin{aligned} & 0.52 \\ & - \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.24 \end{aligned}$
One long edge discontinuous Continuous edge Discontinuous edge	$\begin{aligned} & 0.36 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & - \end{aligned}$

This table only can be used for two-way slabs. The type of spanning slab (from 9 cases) must be identified first.

Analysis of Actions

- Two-way spanning slab:

Analysis of Actions

Analysis of Actions

Table 3.15 - Shear force coefficient for uniformly loaded rectangular panels supported on four sides with provision for torsion at corners

Case 1
Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Type of panel and location	$\beta_{v a}$ for values of l_{7} / l_{m}								$\beta_{v g}$
	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
Four edges continuous Continuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33
One short edge discontinuous Continuous edge Discontinuous edge	$\begin{aligned} & 0.36 \\ & - \end{aligned}$	$\begin{aligned} & 0.39 \\ & - \end{aligned}$	$\begin{aligned} & 0.42 \\ & - \end{aligned}$	$\begin{aligned} & 0.44 \\ & - \end{aligned}$	$\begin{aligned} & 0.45 \\ & - \end{aligned}$	$\begin{aligned} & 0.47 \\ & - \end{aligned}$	$\begin{aligned} & 0.50 \\ & - \end{aligned}$	$\begin{aligned} & 0.52 \\ & - \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.24 \end{aligned}$
One long edg'e discontinuous Continuous edge Discontinuous edge	$\begin{aligned} & 0.36 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & - \end{aligned}$
Two adjacent edges discontinuous Continuous edge Discontinuous edge	$\begin{aligned} & 0.40 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.26 \end{aligned}$
Two short edges discontinuous Continuous edge Discontinuous edge	0.40 $-\quad$	$\begin{aligned} & 0.43 \\ & \end{aligned}$	$\begin{aligned} & 0.45 \\ & - \end{aligned}$	$\begin{aligned} & 0.47 \\ & - \end{aligned}$	$\begin{aligned} & 0.48 \\ & - \end{aligned}$	$\begin{aligned} & 0.49 \\ & - \end{aligned}$	$\begin{aligned} & 0.52 \\ & - \end{aligned}$	$\begin{aligned} & 0.54 \\ & - \end{aligned}$	0.26
Two long edges discontinuous Continuous edge Discontinuous edge	$-$	$\overline{0.30}$	$-$	$-$	$-$	$\overline{0.40}$	$-$	$\overline{0.47}$	$\begin{aligned} & 0.40 \\ & - \end{aligned}$
Three edges discontinuous (one long edge discontinuous) Continuous edge Discontinuous edge	$\begin{aligned} & 0.45 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.41 \end{aligned}$	0.29
Three edges discontinuous (one short edge discontinuous) Continuous edge Discontinuous edge	$-$	$-$	$-$	$-$	$-$	- 0.42	$-$	$\overline{-}$	$\begin{aligned} & 0.45 \\ & 0.30 \end{aligned}$
Four edges discontinuous Discontinuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33

With Wisdom We Explore

Example 1

- Determine the characteristic permanent and variable action on beam B/1-3.Given the following data: Unit weight of concrete $=25 \mathrm{kN} / \mathrm{m}^{3}$; Finishes, ceiling and services $=$ $2.0 \mathrm{kN} / \mathrm{m}^{2}$;Variable action (all slabs) $=3.0 \mathrm{kN} / \mathrm{m}^{2}$.

Action on slab:
Selfweight $=0.15 \times 25$
Finishes, ceiling and services
Chac. Permanent action, $G_{k} \quad=5.75 \mathrm{kN} / \mathrm{m}^{2}$
Chac. Variable action, $Q_{k} \quad=3.0 \mathrm{kN} / \mathrm{m}^{2}$

Distribution of actions
FS1 : $I_{y} / I_{x}=7.5 / 2.5=3>2.0$, One-way slab
FS2: $I_{y} I_{x}=4.0 / 3.0=1.33<2.0$, Two-way slab
FS3 : $I_{y} I_{x}=4.5 / 4.0=1.13<2.0$, Two-way slab

Example 1

Example 1

With Wisdom We Explore

Example 1

Action from slab:

$\mathrm{w}_{1} \mathrm{G}_{\mathrm{k}}=0.5 \times 5.75 \times 2.5=7.19 \mathrm{kN} / \mathrm{m}$
$w_{1} Q_{k}=0.5 \times 3.00 \times 2.5=3.75 \mathrm{kN} / \mathrm{m}$

From Table 3.15: BS 8110: Part 1: 1997

Type of panel and location	β_{vx} for values of $l_{\mathrm{y}} / l_{\mathrm{x}}$								β_{vy}
	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
Two adjacent edges discontinuous									
Continuous edge	0.40	(0.44	0.47	0.50	0.52	0.54	0.57	0.60	0.40
Discontinuous edge	0.26	0.29	0.31	0.33	0.34	0.35	0.38	0.40	0.26

$w_{2} G_{k}=0.4 \times 5.75 \times 3.0=6.90 \mathrm{kN} / \mathrm{m}$
$w_{2} Q_{k}=0.4 \times 3.00 \times 3.0=3.60 \mathrm{kN} / \mathrm{m}$
$w_{3} G_{k}=0.44 \times 5.75 \times 4.0=10.12 \mathrm{kN} / \mathrm{m}$
$w_{3} Q_{k}=0.44 \times 3.00 \times 4.0=5.28 \mathrm{kN} / \mathrm{m}$

Example 1

Actions on beam:
Beam selfweight $=0.20 \times(0.5-0.15) \times 25=1.75 \mathrm{kN} / \mathrm{m}$
Span 1-2
Permanent action, $\mathrm{G}_{\mathrm{k}} \quad=7.19+6.90+1.75=15.84 \mathrm{kN} / \mathrm{m}$
Variable action, $\mathrm{Q}_{\mathrm{k}} \quad=3.75+3.60=7.35 \mathrm{kN} / \mathrm{m}$
Span 2-3
Permanent action, $\mathrm{G}_{\mathrm{k}} \quad=7.19+10.12+1.75=19.06 \mathrm{kN} / \mathrm{m}$
Variable action, $Q_{k} \quad=3.75+5.28=9.03 \mathrm{kN} / \mathrm{m}$

Combination of Action

- "Combination of action" is specifically used for the definition of the magnitude of actions to be used when a limit state is under the influence of different actions.
- For continuous beam, "Load cases" is concerned with the arrangement of the variable actions to give the most unfavourable conditions or most critical responses.
- If there is only one variable actions (e.g. imposed load) in a combination, the magnitude of the actions can be obtained by multiplying with the appropriate factors.
- If there is more than one variable actions in combination, it is necessary to identify the leading action($Q k, 1$) and other accompanying actions ($Q k, i)$. The accompanying actions is always taken as the combination value.

Combination of Action

- In considering the combinations of actions, the relevant cases shall be considered to enable the critical design conditions to be established at all sections, within the structure or part of the structure considered.
- For simply supported beam, the analysis for bending and shear force can be carried out using statically determinate approach. For the ultimate limit state we need only consider the maximum load of $1.35 G_{k}+1.5 Q_{k}$ on the span.
- For continuous beam, the following simplified load arrangements (based on National Annex) are recommended:
- Load set 1: Alternate or adjacent spans loaded
- Load set 2: All or alternate spans loaded

Combination of Action

- Load set 1: Alternate or adjacent spans loaded (Section 5.1.3: MS EN 1992-1-1)
- Alternate span carrying the design permanent and variable load (1.35Gk + 1.5Qk), other spans carrying only the design permanent loads (1.35Gk)
- Any two adjacent spans carrying the design permanent and variable loads (1.35Gk + 1.5Qk), all other spans carrying only the design permanent load (1.35Gk)
- Load set 2: All or alternate spans loaded

(UK National Annex)

- All span carrying the design permanent and variable loads (1.35Gk+ 1.5Qk)
- Alternate span carrying the design permanent and variable load (1.35Gk+ 1.5Qk), other spans carrying only the design permanent loads (1.35Gk)

Combination of Action

- Load set 1: Alternate spans loaded

Maximum action $=1.35 \mathrm{Gk}+1.5 \mathrm{Qk}$
Minimum action $=1.35 \mathrm{Gk}$

Combination of Action

- Load set 1: Adjacent Span Loaded

Combination of Action

- Load set 2: All span loaded

- Load set 2: Alternate span loaded

With Wisdom We Explore

Moment and Shear Force

- The shear force and bending moment diagrams can be drawn for each of the load cases required in the patterns of loading.
- A composite diagram comprising a profile indicating the maximum values including all possible load cases can be drawn; this is known as an envelope.
- Three analysis methods may be used in order to obtain shear force and bending moment for design purposes. There are;

1Elastic analysis using moment distribution method (Modified Stiffness Method)

- Simplified method using shear and moment coefficient from Table 3.6: BS 8110: Part 1.

3Using commercial analysis software such as Staad.Pro, Esteem, Ansys, Lusas, etc.

Moment and Shear Force

- Envelope moment and shear force:

Load Case 1

Load Case 2

BMD

Moment and Shear Force

- Envelope moment and shear force:

Load Case 3

BMD

SHEAR FORCE DIAGRAM ENVELOPE

BENDING MOMENT DIAGRAM ENVELOPE

UTHM
 Moment Distribution Method

- Moment distribution method is only involving distribution moments to joint repetitively.
- The accuracy of moment distribution method is dependent to the number repeat which does and usually more than 5 repeat real enough. Right value will be acquired when no more moments that need distributed.
- In general the value is dependent to several factor as:
- Fixed end moment - the moment at the fixed joints of a loaded member.
- Carry over factor - the carry-over factor to a fixed end is always 0.5 , otherwise it is zero.
- Member stiffness factor (distribution factor) - need to be determined based on moment of inertia and stiffness.

Simplified Method

- The analysis using Moment Distribution Method is time consuming.
- Therefore, as a simplification, Cl. 3.4.3 BS 8110 (Table 3.5) can be used. This simplified method enables a conservative estimation of shear force and bending moment for continuous beam.
- However, there are conditions which must be satisfied:
- The beams should be approximately equal span.
- Variation in span length should not exceed 15% of the longest span.
- The characteristic variable action, Qk may not exceed the characteristic permanent action, Gk.
- Load should be substantially uniformly distributed over three or more spans.

Simplified Method

	At outer support	Near middle of end span	At first interior support	At middle of interior spans	At interior supports
Moment	0	0.09 Fl	-0.11 Fl	0.07 Fl	-0.08 Fl
Shear	0.45 F	-	0.6 F	-	0.55 F

NOTE l is the effective span;
F is the total design ultimate load $(1.35 \mathrm{Gk}+1.5 \mathrm{Qk})$
No redistribution of the moments calculated from this table should be made.

End Span

Interior Span

With Wisdom We Explore

Example 2

- By using simplified method, analyze the beam as shown below.

$$
\begin{aligned}
F & =1.35 G_{k}+1.5 Q_{k} \\
& =1.35(18.31)+1.5(6.00)=33.72 \mathrm{kN} / \mathrm{m} \times 8 \mathrm{~m}=269.75 \mathrm{kN}
\end{aligned}
$$

Example 2

Shear force and bending moment diagrams

Moment Redistribution

- Plastic behavior of RC at the ULS affects the distribution of moment in structure.
- To allow for this, the moment derived from an elastic analysis may be redistributed based on the assumption that plastic hinges have formed at the sections with the largest moment.
- From design point of view, some of elastic moment at support can be reduced, but this will increasing others to maintain the static equilibrium of the structure.
- The purpose or moment redistribution is to reduced the bending moment at congested zone especially at beamcolumn connection of continuous beam support.
- Therefore, the amount of reinforcement at congested zone also can be reduced then it will result the design and detailing process become much easier.

Moment Redistribution

- Section 5.5 EC2 permit the moment redistribution with the following requirement;
- The resulting distribution remains in equilibrium with the load
- The continuous beam are predominantly subject to flexural
- The ratio of adjacent span should be in the range of 0.5 to 2
- There are other restrictions on the amount of moment redistribution in order to ensure ductility of the beam such as grade of reinforcing steel and area of tensile reinforcement and hence the depth of neutral axis.
- Class A reinforcement; redistribution should $\leq 20 \%$
- Class B and C reinforcement; redistribution should $\leq 30 \%$

Example 3

- For the moments obtained from Moment Distribution Method, redistribute 20% of moment at supports.

Example 3

Redistribute the moment at support
Original moment at support B \& D $=231.21 \mathrm{kNm}$
Reduced moment (20\%) $\quad=0.8 \times 231.21=184.97 \mathrm{kNm}$

Original moment at support C $=154.14 \mathrm{kNm}$
Reduced moment (20\%) $\quad=0.8 \times 154.14=123.31 \mathrm{kNm}$

Recalculate the shear force using equilibrium principles.

Example 3

Span A - B

$\Sigma M_{B}=0$
$\mathrm{V}_{\mathrm{A}}(8)-33.72(8)^{2} / 2+184.97=0$
$\mathrm{V}_{\mathrm{A}}=894.07 / 8=111.76 \mathrm{kN}$
$\Sigma \mathrm{F}_{\mathrm{y}}=0$
$111.76+\mathrm{V}_{\mathrm{B} 1}-33.72(8)=0$
$\mathrm{V}_{\mathrm{B} 1}=158.0 \mathrm{kN}$

Span B - C

$$
\begin{aligned}
& \Sigma \mathrm{M}_{\mathrm{C}}=0 \\
& \mathrm{~V}_{\mathrm{B} 2}(8)-33.72(8)^{2} / 2+123.21-184.97=0 \\
& \mathrm{~V}_{\mathrm{B} 2}=1140.8 / 8=142.60 \mathrm{kN} \\
& \Sigma \mathrm{~F}_{\mathrm{y}}=0 \\
& 142.60+\mathrm{V}_{\mathrm{C} 1}-33.72(8)=0 \\
& \mathrm{~V}_{\mathrm{C} 1}=127.16 \mathrm{kN}
\end{aligned}
$$

123.21 kNm

Example 3

```
Span C - D
\(\Sigma \mathrm{M}_{\mathrm{D}}=0\)
\(\mathrm{V}_{\mathrm{C} 2}(8)-33.72(8)^{2} / 2-123.21+184.97=0\)
\(\mathrm{V}_{\mathrm{C} 2}=1017.28 / 8=127.16 \mathrm{kN}\)
\(\Sigma \mathrm{F}_{\mathrm{y}}=0\)
\(127.16+V_{D 1}-33.72(8)=0\)
\(\mathrm{V}_{\mathrm{D} 1}=142.60 \mathrm{kN}\)
```


Span D-E

$$
\Sigma \mathrm{M}_{\mathrm{E}}=0
$$

$$
\mathrm{V}_{\mathrm{D} 2}(8)-33.72(8)^{2} / 2-184.97=0
$$

$$
\mathrm{V}_{\mathrm{D} 2}=1264.01 / 8=158.0 \mathrm{kN}
$$

