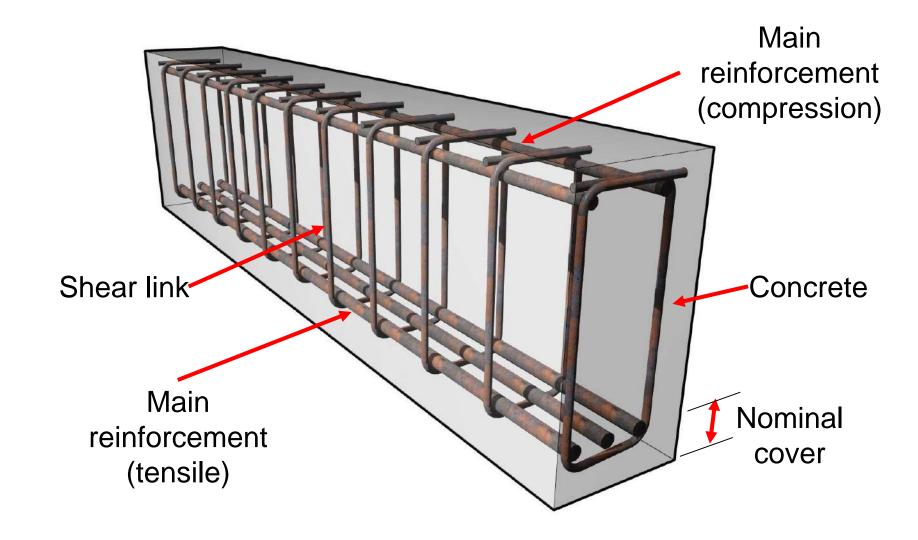


www.uthm.edu.my

Semester 1 2016/2017

Rectangular Beam Design


Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

- The purposes of this chapter is to compile the design principles that have been previously discussed in order to form a complete design procedures of reinforced concrete beam.
- Basically, beam is the structural element which subjected to transverse load in the form of bending moment, shear force and torsion.
- Therefore, beam is designed to resist all that particular factors.
- Beam is also designed to fulfill the serviceability requirements in order to produce an adequate and safe design.
- The design principle of beam involves the design of main and secondary reinforcements, shear link, deflection control and cracking.

Introduction

Design Procedures

Step	Task	Standard
1	Determine design life	EN 1990:2002 Table 2.1
2	Determine beam size	EN 1992-1-1: Table 7.4N EN 1992-1-2: Table 5.5 & 5.6
3	Determine design actions on beam	EN 1991-1-1
4	Assess durability and characteristic strengths	EN 1992-1-1: Sec. 3 & 4
5	Determine nominal cover	EN 1991-1-1: Sec.4.4.1
6	Calculate moment and shear force	EN 1992-1-1: Sec.5
7	Design of flexural reinforcement	EN 1992-1-1: Sec.6.1, 9.2.1.1
8	Design of shear reinforcement	EN 1992-1-1: Sec.6.2
9	Check deflection	EN 1992-1-1: Sec.7.4
10	Check cracking	EN 1992-1-1: Sec.7.3
11	Detailing	EN 1992-1-1: Sec.8 & 9.2

- From structural point of view, the selection of beam sizes is often dictated by deflection control criteria.
- Span to overall depth (*L/h*) ratios of 13 to 18 are generally found to be economical in the case of simply supported and continuous beam.
- The recommended ratio of width to overall depth (b/h) in rectangular beam section is in the range of 0.3 to 0.6.
- Beside of that, the beam sizes also control by an architectural detailing and fire resistance requirement.
- EC2 gives recommendation to determine the dimension of beam based on:
 - 1) Minimum width, *b_{min}* based on fire resistance (Tables 5.5 and 5.6, BS EN 1992-1-2)
 - 2) Effective depth, d_{eff} for deflection control (Table 7.4N)

Size of Beam

• Minimum width, *b_{min}* of beam (simply support) based on fire

Ctondord	Minimum Dimension (mm)							
Standard Fire	Possible combinations of a and <i>b_{min}</i> where				Web Thickness b _w			
Resistance	a is the average axis distance and <i>b_{min}</i> is the width of beam				Class WA	Class WB	Class WC	
1	2	3	4	5	6	7	8	
R 30	<i>b_{min}</i> = 80	120	160	200	80	80	80	
	a = 25	20	15*	15*				
R 60	<i>b</i> _{min} = 120	160	200	300	100	80	100	
	<i>a</i> = 40	35	30	25				
R 90	<i>b_{min}</i> = 150	200	300	400	110	100	100	
	a = 55	45	40	35				
R 120	<i>b</i> _{min} = 200	240	300	500	130	120	120	
	a = 65	60	55	50				
R 180	<i>b_{min}</i> = 240	300	400	600	150	150	140	
	<i>a</i> = 80	70	<mark>65</mark>	60				
R 240	<i>b</i> _{min} = 280	350	500	700	170	170	160	
	a = 90	80	75	70				

Size of Beam

• Minimum width, b_{min} of continuous beam based on fire

Standard	Minimum Dimension (mm)						
Standard Fire	Possible combinations of a and <i>b_{min}</i> where				Web Thickness b _w		
Resistance	a is the average axis distance and <i>b_{min}</i> is the width of beam				Class WA	Class WB	Class WC
1	2	3	4	5	6	7	8
R 30	b _{min} = 80 a = 15*	160 12*			80	80	80
R 60	b _{min} = 120 a = 25	200 12*			100	80	100
R 90	b _{min} = 150 a = 35	250 25			110	100	100
R 120	b _{min} = 200 a = 45	300 35	450 35	500 30	130	120	120
R 180	b _{min} = 240 a = 60	400 50	550 50	600 40	150	150	140
R 240	b _{min} = 280 a = 70	500 60	650 60	700 50	170	170	160

Size of Beam

• Effective depth, d_{eff} of beam based on deflection control

			Basic span-effective depth ratio		
Structural System		к	Concrete highly stressed, ρ=1.5%	Concrete lightly stressed, ρ=0.5%	
1	Simply supported beam, one/two-way simply supported slab	1.0	14	20	
2	End span of continuous beam or one- way continuous slab or two-way spanning slab continuous over one long side	1.3	18	26	
3	Interior span of beam or one-way or two-way spanning slab	1.5	20	26	
4	Slab supported on columns without beam (flat slab) based on longer span	1.2	17	24	
5	Cantilever	0.4	6	8	

- Design for flexural includes the determination of main reinforcement for tensile and compression, if required, and the limitation area of reinforcement.
- The derived formulae of flexural design is based on the rectangular stress block, CI.3.1.7 and CI.3.1.8.
- The area of tension reinforcement should not be taken as less than $A_{s,min}$ and should not exceed $A_{s,max}$, CI.9.2.1.

$$A_{s,\min} < A_{s,prov} < A_{s,\max}$$
$$A_{s,\min} = 0.26 \left(\frac{f_{ctm}}{f_{yk}}\right) b_t d \ge 0.0013 b_t d$$

$$A_{s,max} = 0.04 A_c = 0.04 b_t h$$

- Design procedure for rectangular beam:
 - 1) Calculate K,

$$K = rac{M_{Ed}}{f_{ck}bd^2}$$

2) Calculate K_{bal}

$$K_{bal} = 0.363(\delta - 0.44) - 0.116(\delta - 0.44)^{2}$$

when moment redistribution is zero, $\delta = 1$, $K_{bal} = 0.167$

3) Comparison between K and K_{bal} If $K \leq K_{bal}$, compression reinforcement is not required

$$z = d \left[0.5 + \sqrt{0.25 - \frac{K}{1.134}} \right] \le 0.95d \ ; \ A_s = \frac{M_{Ed}}{0.87f_{yk}z}$$

Design For Flexural

If $K > K_{bal}$, compression reinforcement is required, thus

$$z = d \left[0.5 + \sqrt{0.25 - \frac{K_{bal}}{1.134}} \right] \le 0.95d$$

$$x = \frac{d - z}{0.4}$$
Checking, $\frac{d'}{x} \le 0.38 \longrightarrow A_{s}' = \frac{(K - K_{bal}) f_{ck} b d^{2}}{0.87 f_{yk} (d - d')}$

$$\frac{d'}{x} > 0.38 \longrightarrow A_{s}' = \frac{(K - K_{bal}) f_{ck} b d^{2}}{f_{sc} (d - d')}$$

$$A_{s} = \frac{K_{bal} f_{ck} b d^{2}}{0.87 f_{yk} z} + A_{s}' \left(\frac{f_{sc}}{0.87 f_{yk}}\right) \qquad f_{sc}?$$

- Design procedure for flange beam:
 - 1) Calculate M_{f} ,

$$M_{f} = 0.567 f_{ck} b h_{f} (d - 0.5 h_{f})$$

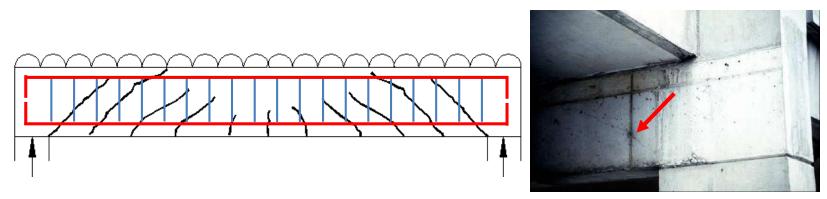
 If M ≤ Mf, neutral axis in the flange and hence provide tensile reinforcement only

$$K = \frac{M_{Ed}}{bd^2 f_{ck}}$$
$$z = d \left[0.5 + \sqrt{0.25 - \frac{K}{1.134}} \right] \le 0.95d$$
$$A_{s,req} = \frac{M_{Ed}}{0.87 f_{yk} z}$$

3) If $M > M_f$, neutral axis in the web

$$\beta_{f} = 0.167 \frac{b_{w}}{b} + 0.567 \frac{h_{f}}{d} \left(1 - \frac{b_{w}}{b}\right) \left(1 - \frac{h_{f}}{2d}\right)$$

 $M_{\scriptscriptstyle bal} = \beta_{\scriptscriptstyle f} f_{\scriptscriptstyle ck} b d^2$


 $M < M_{bal}$, compression reinforcement is not required $A_{s} = \frac{M + 0.1 f_{ck} b_{w} d(0.36d - h_{f})}{0.87 f_{yk} (d - 0.5h_{f})}$

 $M > M_{bal} \text{, compression reinforcement is required}$ $A_{s}' = \frac{(M - M_{f})}{0.87f_{yk}(d - d')}$ $A_{s} = \frac{0.167f_{ck}b_{w}d + 0.567f_{ck}h_{f}(b - b_{w})}{0.87f_{yk}} + A_{s}'$

Design For Shear

- EC2 introduces the strut inclination method for shear capacity checks.
- In this method, the shear is resisted by concrete struts acting in compression and shear reinforcement acting in tension.
- Specified in CI.6.2.1(8), CI.6.3(1 & 3), CI.6.3.(3), CI.6.2.3(3), CI.9.2.2(5 & 6).

- where BM is greatest: cracks are caused by bending stress in the tension zone.
- where SF is greatest: cracks are caused by diagonal tension/compression due to complementary shears.

Design For Shear

- Design procedure:
 - 1) Determine design shear force, V_{Ed}
 - 2) Determine the concrete strut capacity for *cot* θ =1.0 and *cot* θ =2.5 (θ = 22° and θ = 45° respectively)

$$V_{Rd,max} = \frac{0.36b_{w}df_{ck}(1 - f_{ck} / 250)}{\cot\theta + \tan\theta}$$
 CI.6.2.3 (3)

If $V_{Ed} > V_{Rd,max} \cot \theta = 1.0$ ($\theta = 45^{\circ}$), redesign the section

If $V_{Ed} < V_{Rd,max} \cot \theta = 2.5$, use $\cot \theta = 2.5$ ($\theta = 22^{\circ}$), and calculate the shear reinforcement as follows,

$$\frac{A_{sw}}{s} = \frac{V_{Ed}}{0.78f_{yk}d\cot\theta} \quad ; \quad (\cot\theta = 2.5)$$

Design For Shear

If
$$V_{\text{Rd,max}} \cot \theta = 2.5 < V_{Ed} < V_{Rd,max} \cot \theta = 1.0$$

 $\theta = 0.5 \sin^{-1} \left[\frac{V_{Ed}}{0.18 b_w df_{ck} (1 - f_{ck} / 250)} \right]$
 $\frac{A_{sw}}{s} = \frac{V_{Ed}}{0.78 f_{yk} d \cot \theta}$; $s < 0.75d$ Maximum spacing

3) Calculate the minimum links,

$$\frac{A_{sw}}{s} = \frac{0.08b_{w}\sqrt{f_{ck}}}{f_{yk}}$$

<u>C</u>I.9.2.2(5)

4) Calculate the additional longitudinal tensile force caused by the shear and the additional tension reinforcement,

$$\Delta F_{td} = 0.5 V_{Ed} \cot \theta$$

 $A_{s} = \Delta F_{td} / 0.87 f_{yk}$

Deflection

- To control deflection to a maximum of span/250.
- Procedure:

1) Calculate
$$\rho_o = \sqrt{f_{ck}} \ 10^{-3}$$

2) Calculate $\rho = A_{s,req} / bd$
3) Calculate $\rho' = A_{s,req} / bd$
4) Determine K and calculate l/d

$$\frac{l}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_o}{\rho} + 3.2\sqrt{f_{ck}} \left(\frac{\rho_o}{\rho} - 1\right)^{3/2} \right] ; \rho \le \rho_o$$

$$\frac{l}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_o}{\rho - \rho} + \frac{1}{12}\sqrt{f_{ck}} \sqrt{\frac{\rho}{\rho}} \right] ; \rho > \rho_o$$

5) Calculate modification factor, MF_{span} and MF_{area} 6) For adequate deflection control, $(l/d)_{actual} < (l/d)_{allow}$

Deflection

 Factor for structural system can be determined from Table 7.4N:

			Basic span-effective depth ratio		
Structural System		К	Concrete highly stressed, ρ=1.5%	Concrete lightly stressed, ρ=0.5%	
1	Simply supported beam, one/two-way simply supported slab	1.0	14	20	
2	End span of continuous beam or one- way continuous slab or two-way spanning slab continuous over one long side	1.3	18	26	
3	Interior span of beam or one-way or two-way spanning slab	1.5	20	26	
4	Slab supported on columns without beam (flat slab) based on longer span	1.2	17	24	
5	Cantilever	0.4	6	8	

Cracking

Table 7.2N

Table 7.3N

- Crack control for beam design can be directly referred to CI.7.3.
- For a convenient, crack control without direct calculation is preferable, CI. 7.3.3, Table 7.2N and Table 7.3N.
- Procedure:
 - 1) Calculate steel stress for limiting crack width, $w_k = 0.3$ mm

$$f_{s} = 435 \left[\frac{G_{k} + 0.3Q_{k}}{1.35G_{k} + 1.5Q_{k}} \right] \left(\frac{A_{s,req}}{A_{s,prov}} \right)$$

- 2) Determine maximum bar size or bar spacing
- 3) For adequate crack control,

$$\emptyset_{bar,prov} < \emptyset_{bar,max}$$

or $S_{prov} < S_{max}$

Cracking

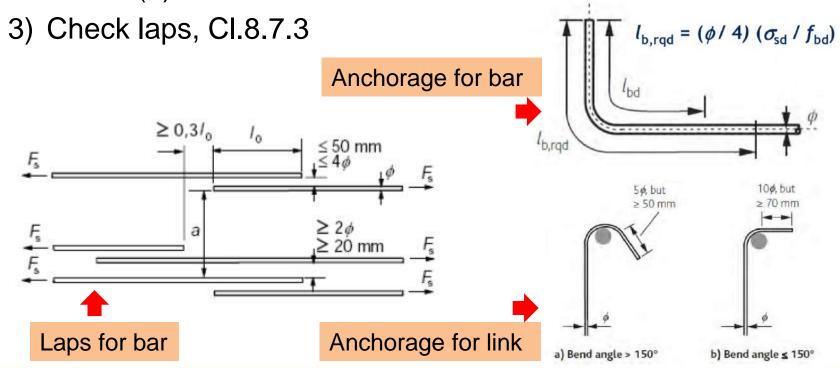
Maximum bar diameter for crack control (Table 7.2N)

Steel Stress	Maximum Bar Size (mm)					
(N/mm2)	w _k = 0.4mm	w _k = 0.3mm	w _k = 0.2mm			
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	5			
400	8	6	4			
450	6	5	-			

 Preferable for single layer of reinforcement with adequate clear distance spacing, S_{prov} > max{Ø_{bar}; Ø_{agg}+ 5mm; 20mm}

Cracking

Maximum bar spacing for crack control (Table 7.3N)

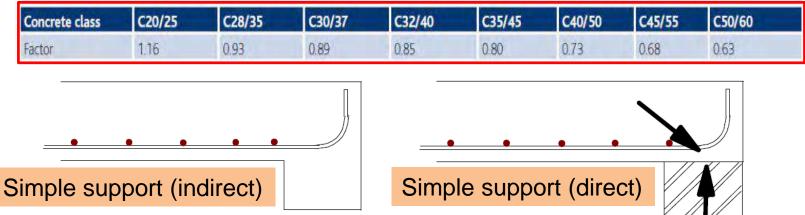

Steel Stress	Maximum Bar Spacing (mm)				
(N/mm2)	w _k = 0.4mm	w _k = 0.3mm	w _k = 0.2mm		
160	300	300	200		
200	300	250	150		
240	250	200	100		
280	200	150	50		
320	150	100	-		
360	100	50	-		

- Preferable for multi-layer of reinforcement as long as attain the maximum diameter reinforcement.
- $S_{prov} < S_{max}$

Detailing

- Detailing of reinforcement in term of curtailment, anchorage and laps must be provided to satisfy the requirement.
 - 1) Check curtailment, CI.9.3.1.1(4), 9.2.1.3, Fig.9.2
 - 2) Check anchorage, Cl.9.3.1.2, 8.4.4, 9.3.1.19(4), 9.2.1.5(1), 9.2.1.5(2)

With Wisdom We Explore

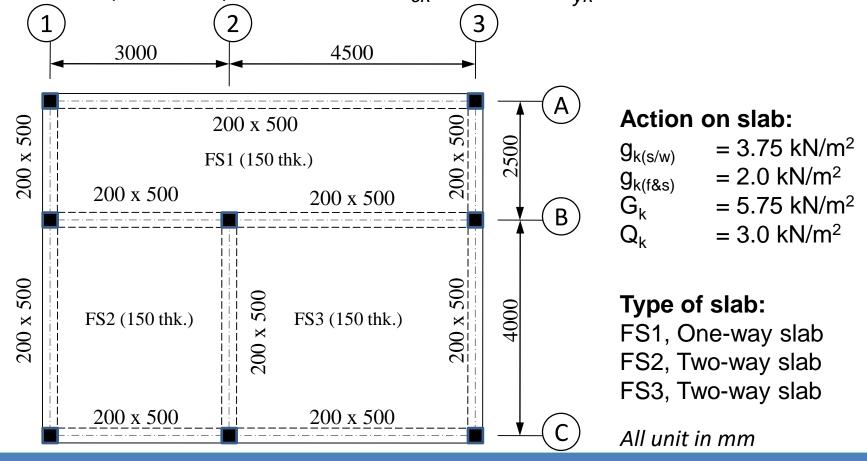


- Simplified rule for anchorage of bottom reinforcement at end supports:
 - 1) A_s bottom steel reinforcement at support $\ge 0.25A_{s,prov}$ in span.
 - 2) I_{bd} is required from the line of contact of the support.

$$I_{bd} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 I_{bd,req} = \alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 (40.3\phi_{bar})$$

Take conservative value, $\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = 1$

 $\alpha_{2} = 1.0 - 0.15(c_{d} - 3\phi)\phi \leq 10$



With Wisdom We Explore

Tutorial 1

• Design beam 2/B-C. Given the following data: unit weight of concrete = $25kN/m^3$; finishes-services = $2.0kN/m^2$; variable action (all slabs) = $3.0kN/m^2$, f_{ck} = 25MPa, f_{vk} = 500MPa

