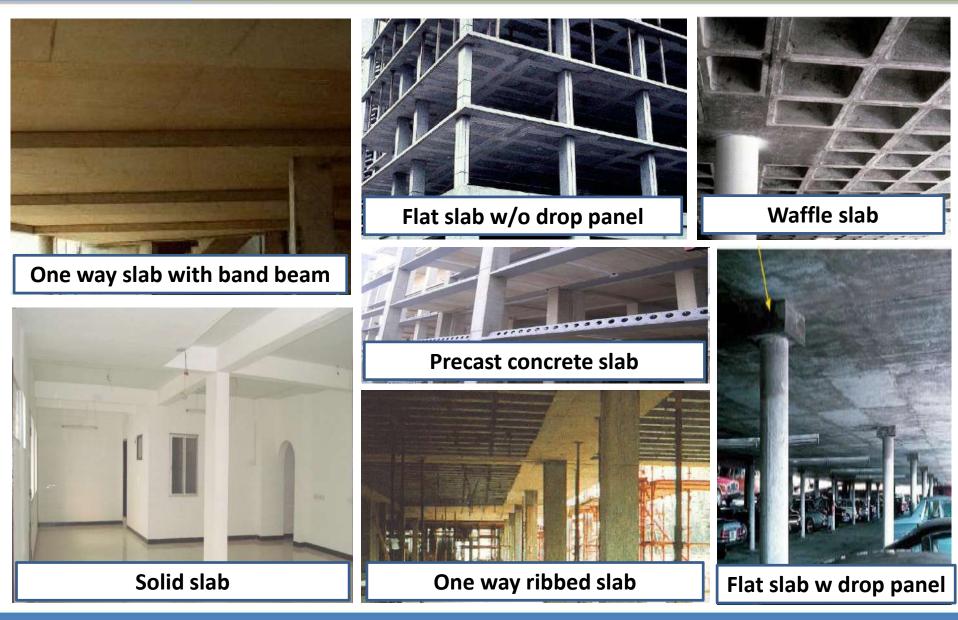


www.uthm.edu.my

Semester 1 2016/2017

Solid Slab Design


Department of Structures and Material Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

- Slabs are plate elements forming floors and roofs in buildings which normally carry uniformly distributed loads.
- Slabs may be simply supported or continuous over one or more supports and are classified according to the method of support as follows:
 - Spanning one way between beams or walls
 - Spanning two ways between the support beams or walls
 - Flat slabs carried on columns and edge beams or walls with no interior beams
- Slabs may be solid of uniform thickness or ribbed with ribs running in one or two directions. Slabs with varying depth are generally not used.
- Type of slabs: One/two-way solid slabs, ribbed slabs, waffle slabs, flat slab with/without drop panel.

Introduction

- One-way solid slab: Slabs of uniform thickness bending and reinforced in one direction. Suitable only for relatively short spans.
- Two-way solid slab: Slabs of uniform thickness bending and reinforced in two directions. Economical for medium spans with intermediate to heavy loads.
- Ribbed slabs: Slab cast integrally with a series of closely spaced joist which in turn are supported by a set of beams. Designed as a series of parallel T-beams and economical for medium spans with light to medium live loads.
- Waffle slabs: A two-way slab reinforced by ribs in twodimensions. Able to carry heavier loads and span longer than ribbed slabs.
- Flab slabs: Slabs of uniform thickness bending and reinforced in two directions and supported directly by columns without beams.

Procedure of Design

Step	Task	Standard
1	Determine design life, exposure class and fire resistance	EN 1990 Table 2.1 EN 1992-1-1: Table 4.1 EN 1992-1-2: Sec.5.6
2	Determine material strength	BS 8500-1: Table A.3 EN 206-1: Table F1
3	Select thickness of slab [$$]	EN 1992-1-1: Table 7.4N EN 1992-1-2: Table 5.8
4	Calculate nominal cover, C _{nom}	EN 1992-1-1: Sec.4.4.1
5	Design actions, N _{Ed}	EN 1991-1-1
6	Moment, $\rm M_{Ed}$ and shear force, $\rm V_{Ed}$ [$\rm $]	EN 1992-1-1: Sec.5
7	Design flexural reinforcement [$$]	EN 1992-1-1: Sec.6.1
8	Check shear resistance [$$]	EN 1992-1-1: Sec.6.2
9	Check deflection [$$]	EN 1992-1-1: Sec.7.4
10	Check cracking [$$]	EN 1992-1-1: Sec.9.3
11	Detailing	EN 1992-1-1: Sec.8 & 9.3

- The selection of slab thickness from structural viewpoint is often dictated by *deflection control criteria*.
- In practice, the overall depths of slabs are often fixed in relation to their spans.
- Span to overall depth ratios of 20 to 30 are generally found to be economical in the case of simply supported and continuous slabs.
- Estimated for deflection control:

$$h = \frac{L}{20} \implies h = \frac{L}{30}$$

- This is based on the ratio of span/effective depth as in Table 7.4N BS EN 1992-1-1:2004.
- The minimum thickness for fire resistance is stated in Table 5.8 BS EN 1992-1-2.

Thickness of Slab

Table 5.8: Minimum dimensions and axis distances for reinforced and prestressed concrete simply supported one-way and two-way solid slabs.

Standard fire resistance		Minimum dimensions (mm)											
		One-way ^{a,b}	Two-way span	Two-way spanning slab ^{a,b,c,d}		Ribs in a two-way spanning ribbed slab ^e							
		spanning slab	$l_{\rm y}/l_{\rm x} \leq 1.5^{\rm f}$	$1.5 < l_y/l_x \le 2^{\rm f}$									
REI 60	h _s =	80	80	80	b _{min} =	100	120	≥200					
	a =	20	10 ^g	15 ^g	a =	25	15 ^g	10 ^g					
REI 90	$h_s =$	100	100	100	b _{min} =	120	160	≥250					
	a =	30	15 ^g	20	a =	35	25	15 ^g					
REI 120	h _s =	120	120	120	b _{min} =	160	190	≥300					
	a =	40	20	25	a =	45	40	30					
REI 240	h _s =	175	175	175	b _{min} =	450	700	<u></u>					
	a =	65	40	50	a =	70	60						

 I_x and I_y are the spans of a two-way slab (two directions at right angles) where I_y is the longer span.

The table is valid only if the detailing requirements are observed and in normal temperature design redistribution of bending moments does not exceed 15%.

The term two way slabs relates to slabs supported at all four edges. If this is not the case, they should be treated as one-way spanning slabs.

- Slab may be analyzed using the following methods:
 - 1) Elastic analysis covers three techniques:
 - (a) idealization into one-way/two-way spanning
 - (b) elastic plate analysis
 - (c) finite element analysis
 - 2) For the method of design coefficients use is made of the moment and shear coefficients given in the code, which have been obtained from yield line analysis.
- For slab, the analysis of moment and shear force may based on BS8110 for the following cases:
 - One-way simply supported/constrained slab
 - One-way continuous slab
 - Two-way simply supported slab
 - Two-way constrained slab

Simply supported/Contraint one-way slab
 Similar to simply supported beam, for 1m slab width:

Moment,
$$M_{\text{max}} = \frac{n_d L^2}{8}$$
; Shear, $V_{\text{max}} = \frac{n_d L}{2}$

 One-way continuous slab
 Moment and shear force can be obtained from Table 3.12, BS8110:

		End suppo	rt condition				
	Pinned		Contii	nuous			
	Outer support	Near middle of end span	End support	End span	At 1 st interior support	At middle of interior span	At interior support
Moment	0	0.086FL	-0.04FL	0.075FL	0.086FL	0.063FL	0.063FL
Shear	0.4F	-	0.46F	-	0.6FL	-	0.5FL

L = effective span

*The use of this table must follow the applied conditions

 $F = total ultimate load = 1.35G_k + 1.5Q_k$

- Table 3.12 only can be used of the slab fullfill the following requirement:
 - The area of each bay, i.e. the building width × column spacing, exceeds 30 m².
 - The ratio of characteristic imposed load to characteristic dead load does not exceed 1.25.
 - The characteristic imposed load does not exceed 5 kN/m²
 excluding partitions.
- If the above conditions are not satisfied, the slab can be analyzed using elastic analysis as performed for continuous beams.

• Two-way simply supported slab Based on Table 3.13 BS8110:1:1:1997 Moment at short span, $M_{sx} = \alpha_{sx} n_d L_x^2$ Moment at long span, $M_{sy} = \alpha_{sy} n_d L_x^2$ Shear force, $V_{Ed} = n_d L_x / 2$

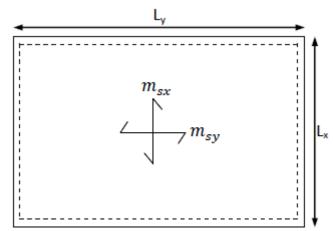


Table 3.13 — Bending moment coefficients for slabs spanning in two directions at right angles, simply-supported on four sides

$l_{\rm y}/l_{\rm x}$	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0
α_{sx}	0.062	0.074	0.084	0.093	0.099	0.104	0.113	0.118
α_{sy}	0.062	0.061	0.059	0.055	0.051	0.046	0.037	0.029

Two-way constrained slab Based on Table 3.14 and Table 3.15 BS8110:1:1:1997 Moment at short span, $M_{sx} = \beta_{sx} n_d L_x^2$ Case 4 Case 2 Case 5 Moment at long span, $M_{sv} = \beta_{sv} n_d L_x^2$ Shear force at short span, $V_{sx} = \beta_{vx} n_d L_x$ Case 3 Case 1 Case 6 Shear force at long span, $V_{sv} = \beta_{vv} n_d L_x$ Case 7 m_{sx} Case 8 m_{sy} $\backslash m_{sx}$ Case 9

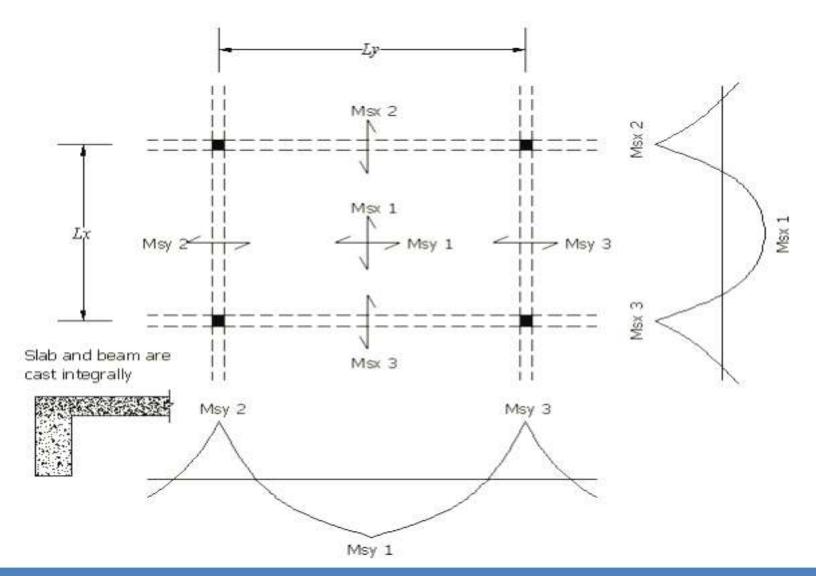


Table 3.14 — Bending moment coefficients for rectangular panels supported on four sides with provision for torsion at corners

	Type of panel and moments Short span coefficients, β_{rrr}										
	Type of panel and moments considered		Values of l_{ω}/l_{m}								
		1.0							β_{zy} for all values of l_y/l_z		
	Interior panels	1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0		
Case 1	Negative moment at continuous edge	0.031	0.037	0.042	0.046	0.050	0.053	0.059	0.063	0.032	
	Positive moment at mid-span	0.024	0.028	0.032	0.035	0.037	0.040	0.044	0.048	0.024	
•	One short edge discontinuous										
Case 2	Negative moment at continuous edge	0.039	0.044	0.048	0.052	0.055	0.058	0.063	0.067	0.037	
	Positive moment at mid-span	0.029	0.033	0.036	0.039	0.041	0.043	0.047	0.050	0.028	
	One long edge discontinuous										
Case 3	Negative moment at continuous edge	0.039	0.049	0.056	0.062	0.068	0.073	0.082	0.089	0.037	
	Positive moment at mid-span	0.030	0.036	0.042	0.047	0.051	0.055	0.062	0.067	0.028	
	Two adjacent edges discontinuous										
Case 4	Negative moment at continuous edge	0.047	0.056	0.063	0.069	0.074	0.078	0.087	0.093	0.045	
	Positive moment at mid-span	0.036	0.042	0.047	0.051	0.055	0.059	0.065	0.070	0.034	
-	Two short edges discontinuous										
Case 5	Negative moment at continuous edge	0.046	0.050	0.054	0.057	0.060	0.062	0.067	0.070	-	
	Positive moment at mid-span	0.034	0.038	0.040	0.043	0.045	0.047	0.050	0.053	0.034	
0	Two long edges discontinuous										
Case 6	Negative moment at continuous edge	—	-	-	-	-	-	-	-	0.045	
	Positive moment at mid-span	0.034	0.046	0.056	0.065	0.072	0.078	0.091	0.100	0.034	
00007	Three edges discontinuous (one long edge continuous)										
Case 7	Negative moment at continuous edge	0.057	0.065	0.071	0.076	0.081	0.084	0.092	0.098	-	
	Positive moment at mid-span	0.043	0.048	0.053	0.057	0.060	0.063	0.069	0.074	0.044	
Case 8	Three edges discontinuous (one short edge continuous)										
Case 0	Negative moment at continuous edge	—	-	-	-	-	-	-	-	0.058	
	Positive moment at mid-span	0.042	0.054	0.063	0.071	0.078	0.084	0.096	0.105	0.044	
Case 9	Four edges discontinuous Positive moment at mid-span	0.055	0.065	0.074	0.081	0.087	0.092	0.103	0.111	0.056	
					•	•	•	•	•		

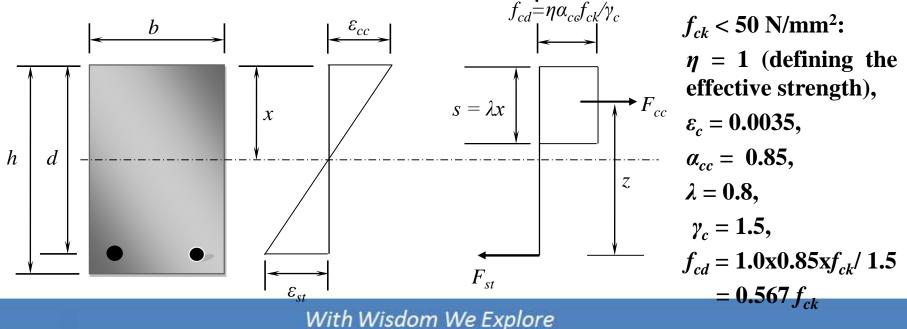


Table 3.15 — Shear force coefficient for uniformly loaded rectangular panels supported on four sides with provision for torsion at corners

		sides with provision for torsion at corners								
	Type of panel and location	$\beta_{ m vn}$ for values of $l_{ m v}/l_{ m n}$							β _{vr}	
		1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	
Case 1	Four edges continuous									
Case I	Continuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33
	One short edge discontinuous									
Case 2	Continuous edge	0.36	0.39	0.42	0.44	0.45	0.47	0.50	0.52	0.36
	Discontinuous edge	—	-	-	-	-	-	-	-	0.24
	One long edge discontinuous									
Case 3	Continuous edge	0.36	0.40	0.44	0.47	0.49	0.51	0.55	0.59	0.36
00000	Discontinuous edge	0.24	0.27	0.29	0.31	0.32	0.34	0.36	0.38	
- .	Two adjacent edges discontinuous									
Case 4	Continuous edge	0.40	0.44	0.47	0.50	0.52	0.54	0.57	0.60	0.40
	Discontinuous edge	0.26	0.29	0.31	0.33	0.34	0.35	0.38	0.40	0.26
- -	Two short edges discontinuous									
Case 5	Continuous edge	0.40	0.43	0.45	0.47	0.48	0.49	0.52	0.54	
	Discontinuous edge	—	-	-	-	-	 -	 -	 _	0.26
•	Two long edges discontinuous									
Case 6	Continuous edge	—	-	-	-	-	-	-	—	0.40
	Discontinuous edge	0.26	0.30	0.33	0.36	0.38	0.40	0.44	0.47	
Case 7	Three edges discontinuous (one long edge discontinuous)									
	Continuous edge	0.45	0.48	0.51	0.53	0.55	0.57	0.60	0.63	
	Discontinuous edge	0.30	0.32	0.34	0.35	0.36	0.37	0.39	0.41	0.29
Case 8	Three edges discontinuous (one short edge discontinuous)									
	Continuous edge	—	—	-	 -	-	-	—	—	0.45
	Discontinuous edge	0.29	0.33	0.36	0.38	0.40	0.42	0.45	0.48	0.30
Case 9	Four edges discontinuous									
	Discontinuous edge	0.33	0.36	0.39	0.41	0.43	0.45	0.48	0.50	0.33

- Slab behave primarily as flexural members with the design similar to that for beams.
- In general, the design of slab become more simpler because compression reinforcement are often not required and the shear stress are usually low except when there are heavy concentrated load.
- The derived formula based on the simplified stress block:

- Follow a similar procedure to that use in beam design:
 - 1) Calculate

$$K = \frac{M_{Ed}}{bd^2 f_{ck}}$$

2) If $K \le K_{bal} = 0.167$, compression reinforcement is not required, hence

$$z = d \left[0.5 + \sqrt{(0.25 - K/1.134)} \right] \le 0.95d$$
$$A_{s} = \frac{M}{0.87f_{vk}z}$$

3) Minimum and maximum reinforcement

$$A_{s,min} = 0.26 (f_{ctm} / f_{yk}) bd \ge 0.0013 bc$$

 $A_{s,max} = 0.04 A_{c} = 0.04 bh$

Secondary reinforcement is 20%A_{s,reg}

	Strength Classes for Concrete (BS EN 1992-1-1:2004) All unit in MPa											
f _{ck}	20	25	30	35	40	45	50	55	60	70	80	90
$f_{\scriptscriptstyle ck,cube}$	25	30	37	45	50	55	60	67	75	85	95	105
f _{cm}	28	33	38	43	48	53	58	63	68	78	88	98
f _{ctm}	2.2	2.6	2.9	3.2	3.5	3.8	4.1	4.2	4.4	4.6	4.8	5.0

$$f_{ctm} = 0.30 \times f_{ck}^{(2/3)} \le C50 / 60$$

$$f_{ctm} = 2.12 \ln[1 + (f_{cm} / 10)] > C50 / 60$$

- Shear stress in slabs subjected to uniformly distributed loads are generally small. It is not usual for a slab to provide shear reinforcement.
- It is necessary to ensure that design ultimate shear force, V_{Ed} is less than shear strength of the unreinforced section, $V_{Rd.c}$.

$$V_{Rd,c} = [0.12k(100\rho_1 f_{ck})^{1/3}]bd \ge [0.035k^{3/2} f_{ck}^{-1/2}]bd$$

$$k = [1 + (200 / d)^{1/2}] \le 2.0d$$

$$\rho_1 = (A_{s1} / bd) \le 0.02$$

$$V_{min} = [0.35k^{3/2} f^{1/2}]bd$$

- Excessive deflection of slabs will cause damage to the ceiling, floor finishes or other architectural finishes.
- To avoid this, limit are set on the span-depth ratio. These limit are similarly to limit for beams.
- As a slab is usually a slender member, the restrictions on the span-depth ratio become more important and this can often control the depth of slab required.
- Two equations are provided in Eq. 7.16.a and 7.16.b, CI 7.4.2.(2):

$$\frac{I}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_0}{\rho} + 3.2\sqrt{f_{ck}} \left(\frac{\rho_0}{\rho} - 1\right)^{3/2} \right] \quad \text{if } \rho \le \rho_0$$

$$\frac{l}{d} = K \left[11 + 1.5\sqrt{f_{ck}} \frac{\rho_0}{\rho - \rho'} + \frac{1}{12}\sqrt{f_{ck}} \sqrt{\frac{\rho'}{\rho_0}} \right] \quad \text{if } \rho \le \rho_0$$

Percentage of required tension reinforcement

ho = $A_{\!\!\! \mathrm{s,req}}$ / bd

Reference reinforcement ratio

$$\rho_0 = (f_{ck})^{1/2} \times 10^{-3}$$

Percentage of required compression reinforcement

 $ho^{\cdot}=A_{\!\!\mathrm{s}^{\,\!\prime},\mathrm{req}}$ / bd

- Factor for structural system, K must be referred in Table 7.4N
- Modification factor:
 - Span greater than 7m = 7/L
 - Steel area provided = $A_{s,prov}/A_{s,req}$ < 1.5
- Deflection limited to span/250, span/500 or 20mm after installation.

Deflection Control

$$\left(\frac{l}{d}\right)_{allow} = \left(\frac{l}{d}\right) \times MF_{i} > \left(\frac{l}{d}\right)_{actual} = \frac{l_{eff}}{d_{eff}}$$

Table 7.4N: Basic ratio of span/effective depth for reinforced concrete members without axial compression

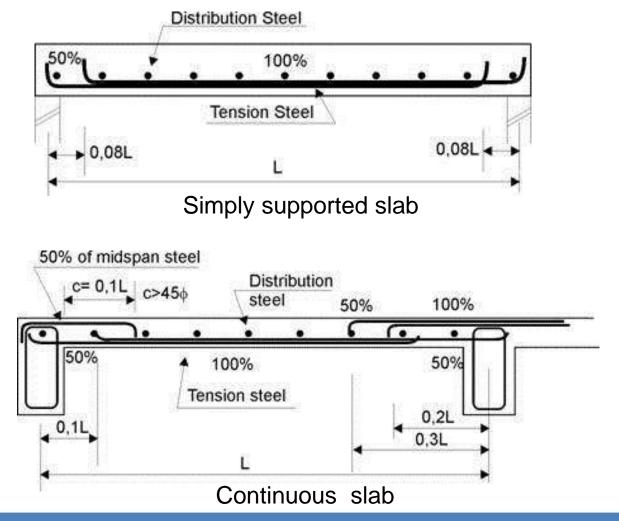
			Basic span-effe	ctive depth ratio
	Structural System	K	Concrete highly stressed, $\rho =$ 1.5%	Concrete lightly stressed, $\rho = 0.5\%$
1.	Simply supported beam, one/two way simply supported slab	1.0	14	20
2.	End span of continuous beam or one-way continuous slab or two way spanning slab continuous over one long side	1.3	18	26
3.	Interior span of beam or one way or two way spanning slab	1.5	20	30
4.	Slab supported on columns without beam (flat slab) based on longer span	1.2	17	24
5.	Cantilever	0.4	6	8

- To resist cracking of the concrete slabs, CI.7.3.3 specify details such as minimum area of reinforcement required in a section and limits to the maximum and minimum spacing of bar.
- For thickness less than 200mm, the crack control is based on the limitation of spacing as:
 - for main bar:

 $S_{max,slab} = 3h \text{ or } 400mm$ (use the smaller)

- for secondary bar:

 $S_{max,slab} = 3.5h \text{ or } 450mm$ (use the smaller)


• Maximum bar spacing:

$$S_{max} = [L_y - 2C_{nom} - \emptyset_{bar}] / [No. bar - 1]$$

• Simplified rules for curtailment, Cl. 9.3

